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Sample lengths for which (4) holds can be computed
by use of the expression:

Ags = >‘/\/—Ke—“‘?;- (5)

Allowed values of sample length can be expressed
directly in terms of the same measurable parameters as

nA

d = ——————— 7 being any integer. 6
N g any integ (6)

Wall loss, which is a function of waveguide param-
eters only, is obtainable by applying (4) to the empty
guide in question, for which case K,=1 and d becomes
the distance from the short to the null position. Wall loss
is eliminated by subtracting the value of tan 8; thus ob-
tained from the value of tan 8, obtained with the sample
in place.

A graph, from (4), facilitating evaluation of loss tan-
gent from the value of Ax/d measured for a sample of
specified length and known K, value is included as Fig.
3. Interpolation on this graph will permit evaluation for
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Fig. 3—Graph of multiplying factor for converting Ax/d to loss
tangent, tan ..

any practical value of the parameter p. Where wall loss
needs to be calculated, it can be read also from the same
graph, using the single additional necessary measure-
ment.

Propagation in Ferrite-Filled Transversely
Magnetized Waveguide®

P. H. VARTANIANY} axp E. T. JAYNES]

Summary—A solution to the problem of propagation of higher
modes in a transversely magnetized ferrite-filled rectangular wave-
guide has been found. The solutions to the problem are expressed in
the form of four rigorous nonlinear algebraic equations which char-
acterize the problem and are ready for numerical solution. The de-
pendence of the fields in the direction of magnetization is the same as
for the classical modes.

in a rectangular waveguide which is completely
filled with {errite and magnetized transversely
to the direction of propagation.

This problem is becoming of more interest as lower
loss ferrites are developed. As these very low-loss ferrites
become available, a class of devices depending on the
ability of a dc magnetic field to change the propagation
constant within a waveguide will become practical.
With the transverse field geometry, these devices will
operate at low field values far from gyromagnetic reso-

WE SHALL consider the problem of propagation

* This paper was presented orally at URSI Symposium on Elec-
tromagnetic Wave Theory, University of Michigan, Ann Arbor,
Mich., June 22, 1955. The work was done at the Electronic Defense
Lab., of Sylvania Electric Products, Inc., under Signal Corps
Contract No. DA-36-039-sc-31435, and at Stanford University.

1 Electronic Defense Lab., Mountain View, Calif.

1 Stanford Univ., Stanford, Calif.

nance. They will be characterized by transverse fields
which are distorted by the applied magnetic field. This
will make this geometry useful in field displacement de-
vices such as isolators and radiators.

We shall hence find the fields and propagation con-
stants for the modes in this particular ferrite geometry.
They will be characterized by parameters which con-
tinuously vary with increasing magnetic field from the
classical TE and TM modes into a new set of modes
having fields and propagation constants which are
magnetically controllable.

Gamo! and Kales? have investigated the case of the
longitudinally magnetized filled cylindrical waveguide.
Van Trier® has solved the case of the TEy; mode in the
transversely magnetized waveguide and found that the
new mode is a TE mode with a distorted transverse
field dependence. Mikaelyan? and recently Chevalier,

* H. Gamo, “The Faraday rotation of waves in a circular wave-
guide,” J. Phys. Soc. Jap., vol. 8, p. 176; March, 1953.

* M. L. Kales, “Modes in waveguides containing ferrites,” J.
Appl. Phys. vol, 24, p. 609, May, 1953.

¢ A. A. Van Trier, Th. M., paper presented orally at meeting of
Amer. Phys. Soc., Washington, D.C.; April, 1952.

A, L. Mikaelyan, “Electromagnetic waves in a rectangular

waveguide filled with a magnetized ferrite,” Doklady, A.N. USSR,
vol. 98, p. 941; October, 1954.
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Kahan, and Polacco® have also worked on the problem.

The problem then, is that of propagation in an in-
finitely long rectangular waveguide shown in Fig. 1,
which is filled with ferrite and transversely magnetized
along the x direction. The solutions to the problem will
be expressed in terms of four rigorous nonlinear alge-
braic equations which characterize the problem and are
ready for numerical solution.

° b 4

Fig. 1—Coordinate system.

Egs. (1) and (2) are Maxwell's equations written in
a form to show the tensor permeability. All field quanti-
ties vary as exp (jowt—vz).
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The elements in the permeability tensor are known,®
given the applied magnetic field and frequency. For
zero applied field, u becomes unity and K zero. It is im-
portant to note that the tensor properties of the ferrite
are limited to the y-z plane, that is, the plane perpen-
dicular to the applied field.

From Maxwell’s equations we derive the relations
for the transverse fields in terms of the longitudinal
fields.

5 A. Chevalier, T. Kahan, and E. Polacco, “Propagation des ondes
electromagnetiques dans un milieu gyromagnetique anisotrope, con-
tenu dans un guide rectangulaire,” Compt. Rend. (Paris), vol. 240,
pp. 1323-1324; March, 1955.

6 C. L. Hogan, “The ferromagnetic Farady effect at microwave
frequencies and its applications,” Bell Sys. Tech. J. vol. 31, pp. 1-31;
January, 19352
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where
k2 = v+ k? k? = w’epg

bt = 7'+ R

It is seen that these are of the usual form except that
the E, and H, relations have extra terms proportional
to H.. Physically this is the rotational effect of the fer-
rite, that is, electrons in the ferrite driven in the g direc-
tion are caused to precess and generate a field in the per-
pendicular plane. We shall work with the E, and H.
fields and the transverse fields can then be found from
these equations.

The two differential equations which E, and H, must
satisfy are obtained from Maxwell’s equations.

[ vX o K a]
we 2
Fyathy? 929y

bt O
+|: 1 92 n w92 n kZK‘Z]H 0 (N
b 02kt 9y ket d
l: 1 82 n 1 o2 " I]E
]?11,2 ox? k1$2 6y2 ‘
X o K @
-+ wuol: - i H,=0 (8
k1x2k1y2 axay kly“ ox

where X =u—1.

There are three interesting cases here. For zero applied
field, the first term in the first equation and second term in
the second equation, are zero since X and K are zero.
The remaining expressions reduce to the usual forms for
the classical TE and TM modes. Secondly if there is no
variation of the fields in the x direction, then the TEg,
modes found by Van Trier® having a distorted trans-
verse dependence and a magnetically controllable
propagation constant result. The third case is the gen-
eral one, of all the other higher order modes.

The fact that the tensor properties are limited to the
y-z plane suggests the form of the solutions shown in

9).

mwx

E. = f(y) sin@ ; H, = g(y) cos——. (9)
a a
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Hence the x dependence of the fields remains unaltered
by the ferrite. Substituting this form of fields into the
differential equations, the x dependence drops out and
we are left with two second order linear differential
equations in f and g. The determinantal equation for
these two equations is

94 92 f

— 4+ B—+4C } =0

ay* ay? g
where B and C depend on the propagation constant,
frequency, and applied field. Thus the functions f and g
may be represented as a sum of four independent trigo-
nometric or exponential functions.

We will choose solutions consisting of products of two
trigonometric functions each having a different argu-

ment, ry and g¢y.
sin sin
ry qy.
cos cos

This particular form is suggested by the requirement
that the fields reduce to the usual TE and TM modes
for the case of zero applied field. Hence we would expect
that 7 would go to »nn/b and ¢ to zero for zero applied
field. As an example, a plot for small values of ¢ of sin
ry cos qy is shown in Fig. 2. It is seen that fields de-

(10)

9

Fig. 2—Distortion of transverse fields described by
sin 7y cos ¢y for small g.

scribed by this function are distorted towards one side
of the waveguide as the magnetic field is applied. As in
the case of the TE,, modes this may result in a Poynting
vector which on one side of the guide is opposite to the
direction of propagation. This may be thought of as a
uniform Poynting vector with a superimposed circu-
lating energy.

Substituting any of these four solutions in (10) yields
two relations which must be satisfied by the unknowns
7 and gq. ’

2. | _ g2 1+ L—’__ﬁ ﬂz y2 g2
e[ -e (5 () (5) e an
2.2 kiuo—1) ﬂgﬁ _ }ﬂ

rrgpm +<a) | <4#)<1+u6>]

Y

(12)
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For zero applied field the propagation constant shown
in (11) goes to the usual form since the u and . become
unity, 7 goes to (nw/b) and ¢ vanishes, as we postulated
when choosing the form of the solutions. A further rela-
tion between 7 and ¢, (12), states that their product
squared is a function only of the applied magnetic field
and frequency. Hence ¢ is known as a function of 7, and
only » must be determined in order to find the propaga-
tion constant.
The E, and H, fields are shown in (13) and (14):

E, = R[Ssinrysin gy + T cos ry sin gy

. . mwx
+ sin 7y cos ¢y] sin (13)
H, = L[M sin 7y cos gy + N cos ry sin qy
. . mra
+ Psinrysin gy + cos ry cos gy] cos (14)

The boundary condition on the E, field at y=0 re-
quired the cos cos term to be identically zero. At y=b
the boundary conditions require the quantity in the
bracket in (13) to be zero.

The H, field in (14) must satisty the boundary con-
dition specified by

0H, ivyKH,
( +1 ) = 0.
ay M y=0,b

This magnetic boundary condition is most easily found
by requiring that £, be zero at the walls. Note that this
boundary condition is different from the usual in that
an extra term is present. Substituting (14) into (15)
vields two equations which along with the one equation
from the E, fields gives 3 equations in 6 unknown ampli-
tudes and the quantity r. We hence need 4 more rela-
tions which are found by substituting the E, and H,
fields into one of the original longitudinal differential
equations. This can be manipulated into a set of 4 non-
linear algebraic equations in four unknowns.

(15)

G — Jtanrbcotgd Gtangdb — ¢(—1, P, — M)

= (16)
J —Gtanrbcotgb  Jtangh — ¢(P, —1, —N)
JrK\ .
— v+ Pg+ M —— ) sin rb cos ¢b
"
JvK .
+{Pr—qg+ N——)cosrbsin gb
"
JYKN . .
+{—Nr— Mg+ P——)sinrbsingb = 0 an
7
(N, M, P) = GK (18)
wMr 4+ Ng) = — jvK (19)
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where

J = - 2Fk1y2
é(u, v, w) = 2FuljyX(ur + vg) + Kk 2w).

The unknowns here are the three magnetic field ampli-
tudes and . The electric amplitudes are known in terms
of these parameters. The theory leading to these equa-
tions has been rigorous and they are now ready for solu-
tion by numerical methods or by approximation tech-
niques.

It can be shown that there are no pure TE or pure
TM modes allowed in the magnetized case. A similar re-
sult was found by Gamo and Kales in their treatment
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of the longitudinally magnetized cylindrical waveguide.
This is physically reasonable since the transverse mag-
netic fields for the TM modes now generate longitudinal
fields through the rotational nature of the ferrite and
thus TM modes would not be expected. Maxwell's
equations permite TE modes only for modes with zero
x dependence and these are Van Trier’s TE,, modes.

In conclusion we have derived a set of four nonlinear
equations whose solution determines a rigorous solution
to the problem of propagation in a transversely magnet-
ized ferrite-filled waveguide. The fields can be expressed
in the form of products of two trigonometric functions
with arguments which are asymptotic to #my/b and 0
in the limit of zero applied field. The product of these
arguments is dependent only on the magnetic field and
frequency.

Currents Excited on a Conducting Surface of

Large Radius of Curvature
JAMES R. WAITY

Summary—The nature of the electromagnetic field of an antenna
in the vicinity of a surface of large radius of curvature is discussed.
Assuming a spherical surface, the solution for a dipole source in the
form of the Watson residue series is transformed to a more rapidly
converging series which is preferable at short distances. Using this
result, numerical data is presented in graphical form for the currents
induced on the spherical surface. The curves are applicable to both
a stub and slot antenna mounted on the conducting surface.

N THE VICINITY of a flush-mounted radar an-
I[ tenna for aircraft, the fuselage is a smooth conduct-
ing surface having large radii of curvature. It is of
interest to know how the current distribution excited
on this curved surface differs from that on a perfectly
flat surface. It is the purpose of this paper to investigate
this problem by simulating the curved surface in the
vicinity of the antenna by a spherical surface.

The starting point is to consider the fields of a radial
electric dipole located on a perfectly conducting sphere
of radius a. Choosing a spherical coordinate system
(r, 8, ¢), the dipole is located at »=a on the polar axis
and the sphere is bounded by r=a. As is well known,}
the solution of this problem can be expressed in a radial
mode series involving half-order Bessel function whose
arguments are ka where k=2r/wavelength. Unfortu-
nately, this representation which is often called the har-
monic series is very poorly convergent if ka is large com-

1 Natl. Bur. of Standards, Boulder, Colo.
1 H. Bremmer, “Terrestial Radio Waves,” Elsevier Pub. Co.
Amsterdam, Holland; 1949.

pared to unity. In fact, something of the order of 2 ka
terms are required to evaluate the field at any point in
space. It was first shown by Watson in 1918 that the
radial mode or harmonic series could be transformed to
the angular mode or residues series.! This Watson repre-
sentation is highly convergent in certain regions of
space, namely, deep in the geometrical shadow of the
source. However, when the observer is in the space near
the dipole source, the series becomes poorly convergent.

It is the principal task in this paper to derive an al-
ternative expansion which is particularly suitable for
calculating the surface currents excited on the spherical
surface when 6 is small and ka is large.

The fields of the dipole can be expressed in terms of a
scalar function v as follows:!

(')2
E, = (kz + 3;) (r0)

1 92
Eo=— e
. 0y
Hy = — few > €))

where € =8.854 X101 and the time factor exp (¢wt) has
been omitted. The surface current density I, in am-
peres/meter, on the spherical surface has only a radial
component. [t is given by

I = Hq‘)]r:a



