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Sample lengths for which (4) holds can

by use of the expression:

h,, = A/4Ke, – f.

ON MICROWAVE THEORY AND TECHNIQUES

be computed

(5)

Allowed values of sample length can be expressed

directly in terms of the same measurable parameters as

d=
?’A

_, n being any integer. (6)
2~Ke – P

Wall loss, which is a function of waveguide param-

eters only, is obtainable by applying (4) to the empty

guide in question, for which case K.= 1 and d becomes

the distance from the short to the null position. Wall loss

is eliminated by subtracting the value of tan & thus ob-

tained from the value of tan & obtained with the sample

in place.

A graph, from (4), facilitating evaluation of loss tan-

gent from the value of Ax/d measured for a sample of

specified length and known K. value is included as Fig.

3. Interpolation on this graph will permit evaluation for
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Fig. 3—Graph of multiplying factor for converting Ax/d to loss
tangent, tan &,

any practical value of the parameter P. Where wall loss

needs to be calculated, it can be read also from the same

graph, using the single additional necessary measure-

ment.

Propagation in Ferrite-Filled Transversely

Magnetized Waveguide*
P. H. VARTANIAN~ AND E. T. JAYNES]

Summary—A solution to the problem of propagation of higher
modes in a transversely magnetized ferrite-filled rectangular wave-
guide has been found. The solutions to the problem are expressed in

the form of four rigorous nordhear algebraic equations which char-

act erize the problem and are ready for numerical solution. The de-
pendence of the fields in the direction of magnetization is the same as
for the classical modes.

W\,E SHALL consider the problem of propagation

in a rectangular waveguide which is completely

filled with ferrite and magnetized transversely

to the direction of propagation.

This problem is becoming of more interest as lower

loss ferrites are developed. As these very low-loss ferrites

become available, a class of devices depending on the

ability of a dc magnetic field to change the propagation

constant within a waveguide will become practical.

With the transverse field geometry, these devices will

operate at low field values far from gyromagnetic reso-
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tromagnetic Wave Theory, University of Michigan, Ann Arbor,
Mich., June 22, 1955. The work was done at the Electronic Defense
Lab., of Sylvania Electric Products, Inc., under Signal Corps
Contract No. DA-36 -039-se-3 1435, and at Stanford University.

~ Electronic Defense Lab., Mountain View, Calif.
$ Stanford Univ., Stanford, Calif.

nance. They will be characterized by transverse fields

which are distorted by the applied magnetic field. This

will make ,this geometry useful in field displacement de-

vices such as isolators and radiators.

We shall hence find the fields and propagation con-

stants for the modes in this particular ferrite geometry.

They will be characterized by parameters which con-

tinuously vary with increasing magnetic field from the

classical TE and TM modes into a new set of modes

having fields and propagation constants which are

magnetically controllable.

Game’ and Kales’ have investigated the case of the

longitudinally magnetized filled cylindrical waveguide.

Van Trier3 has solved the case of the TEIo mode in the

transversely magnetized waveguide and found that the

new mode is a TE mode with a distorted transverse

field dependence. Mikaelyan4 and recently Chevalier,

1 H. Game, “The Faraday rotation of waves in a circular wave-
guide, ” -T. Pkys. SOC. Ja@., vol. 8, p. 176 ~March, 1953.

2 M. L. Kales, “Modes in waveguldes containing ferrites, ” ~.
A@pl. Phys. vol, 247 p. 609, NIay, 1953.

J .4. A. Van Trier, Th. M., paper presented orally at meeting of
Amer. Phys. Sot., Washington, D. C.; April, 1952.

4 A. L. Mikaelyan, “Electromagnetic waves in a rectangular
waveguide filled with a magnetized ferrite, ” Doklady, A.N. USSR,
vol. 98, p. 941; October, 1954.
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Kahan, and Polacco6 have also worked on the problem.

The problem then, is that of propagation in an in-

finitely long rectangular waveguide shown in Fig. 1,

which is filled with ferrite and transversely magnetized

along the x direction. The solutions to the problem will

be expressed in terms of four rigorous nonlinear alge-

braic equations which characterize the problem and are

ready for numerical solution.

Fig. 1—Coordinate system.

Eqs. (1) and (2) are Maxwell’s equations written in

a form to show the tensor permeability. All field quanti-

ties vary as exp (jut –’yz).
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The elements in the permeability tensor are known,G

given the applied magnetic field and frequency. For

zero applied field, w becomes unity and K zero. It is im-

portant to note that the tensor properties of the ferrite

are limited to the y-z plane, that is, the plane perpen-

dicular to the applied field.

From Maxwell’s equations we derive the relations

for the transverse fields in terms of the longitudinal

fields.

s .+. Chevalier, T. KAhan, and E. Polacco, ‘(Propagation des ondes
electromagnetiques clans un milieu gyromagnetique anisotroPe, con-
tenu clans un guide rectan gulaire, ” COmPt. Rend. (Paris), vol. 240,
pp. 1323–1324; March, 1955.

e C. L. Hog-an, “The ferromagnetic Farady effect at microwave
frequencies and its applications, “ Bell Sys. Tech. J. vol. 31, pp. 1-31;
January, 1952
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(3)

(4)

(5)

(6)

It is seen that these are of the usual form except that

the -& and Hv relations have extra terms proportional

to H,. Physically this is the rotational effect of the fer-

rite, that is, electrons in the ferrite driven in the z direc-

tion are caused to precess and generate a field in the per-

pendicular plane. We shall work with the E, and H,

fields and the transverse fields can then be found from

these equations.

The two differential equations which Ez ancl H. must

satisfy are obtained from Maxwell’s equations.

where X = p — 1.

There are three interesting cases here. For zero applied

field, the first term in the first equation and seco nd term in

the second equation, are zero since X and K are zero.

The remaining expressions reduce to the usual forms for

the classical TE and TM modes. !~econdly if there is no

variation of the fields in the x direction, then the TE~~

modes found by Van Trier3 having a distorted trans-

verse dependence and a magnetically controllable

propagation constant result. The third case is the gen-

eral one, of all the other higher order Imcdles.

The fact that the tensor properties are limited to the

y-s plane suggests the form of tlhe solutions shown in

(9).

‘FnT?$ ‘MT x
E. = f(y) sin — ; Hz = g(y) COS –—. (9)

a a
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Hence the z dependence of the fields remains unaltered

by the ferrite. Substituting this form of fields into the

differential equations, the x dependence drops out and

we are left with two second order linear differential

equations in f and g. The determinantal equation for

these two equations is

where B and C depend on the propagation constant,

frequency, and applied field. Thus the functions f and g

may be represented as a sum of four independent trigo-

nometric or exponential functions.

We will choose solutions consisting of products of two

trigonometric functions each having a different argu-

ment, ry and qy.

{2}‘y {:} “-
This particular form is suggested by the requirement

that the fields reduce to the usual TE and TM modes

for the case of zero applied field. Hence we would expect

that r would go to nr/b and q to zero for zero applied

field. As an example, a plot for small values of q of sin

ry cos qy is shown in Fig. 2. It is seen that fields de-
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Fig. 2—Distortion of transverse fields described by
sin ry cos gy for small g.

scribed by this function are distorted towards one side

of the waveguide as the magnetic field is applied. As in

the case of the TEno modes this may result in a Poynting

vector which on one side of the guide is opposite to the

direction of propagation. This may be thought of as a

uniform Poynting vector with a superimposed circu-

lating energy.

Substituting any of these four solutions in (10) yields

two relations which must be satisfied by the unknowns

r and q.

‘2=[-’’(+9+(%3(:)21+’2+’2 ’11)
k’(w, – 1)’

~2q2 =

16 +(:): [’-(%’(1+”’1
+(:)x%” (12)
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and

For zero applied field the propagation constant shown

in (11) goes to the usual form since the p and p. become

unity, r goes to (nn_/b) and q vanishes, as we postulated

when choosing the form of the solutions. A further rela-

tion between r and g, (12), states that their product

squared is a function only of the applied magnetic field

and frequency. Hence q is known as a function of r, and

only r must be determined in order to find the propaga-

tion constant.

The E, and H. fields are shown in (13) and (14):

E, = R[S sin ry sin qy + T cos ry sin qy

mm x
+ sin Ty cos qy] sin —

a

H, = L[M sin ry cos qy + N cos ry sin qy

(13)

‘m7rx
+ P sin ry sin qy + cos Yy cos qy] cos —. (14)

a

The boundary condition on the E, field at y = O re-

quired the cos cos term to be identically zero. At y = b

the boundary conditions require the quantity in the

bracket in (13) to be zero.

The H. field in (14) must satisfy the boundary con-

dition specified by

(~Hz jyh”Hz

)
—+— = o.

6Jy & ?/=0,b
(15)

This magnetic boundary condition is most easily found

by requiring that E. be zero at the walls. Note that this

boundary condition is different from the usual in that

an extra term is present. Substituting (14) into (15)

yields two equations which along with the one equation

from the E. fields gives 3 equations in 6 unknown ampli-

tudes and the quantity V. We hence need 4 more rela-

tions which are found by substituting the E8 and Hz

fields into one of the original longitudinal differential

equations. This can be manipulated into a set of 4 non-

linear algebraic equations in four unknowns.

( jyK

)
—r?-pq+M—— sinrbcosqb

P

(

jyK

)
+ Pr–q+A - cos rb sin qb

#

( )
jyK

+ –Nr-Mq+P - sin rb sin qb = O (17)
P

4(AT, M, P) = GK (18)

P(MY + Nq) = – jyK (19)
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where

‘= “~’(k’.’-(:)-kl)’kl’
J=– 2F’1Y2

rj(u, v, w) = 2FY[j7X(UY + vg) + KklC2zo].

The unknowns here are the three magnetic field ampli-

tudes and ~. The electric amplitudes are known in terms

of these parameters. The theory leading to these equa-

tions has been rigorous and they are now ready for solu-

tion by numerical methods or by approximation tech-

niques.

It can be shown that there are no pure TE or pure

TM modes allowed in the magnetized case. A similar re-

sult was found by Gamo and Kales in their treatment

Surface of Large Radius of Curvafure 143

of the longitudinally magnetized c ylindrica,l wa.veguide.

This is physically reasonable since the transverse mag-

netic fields for the TM modes now generate longitudinal

fields through the rotational nature of the ferrite and

thus TM modes would not be expected. Maxwell’s

eqllations permite TE modes only for modes with z,ero

x dependence aud these are Van Trier’s TIE=O modes.

In conclusion we have derived a set of four nonlinear

equations whose solution determines a rigorous solution

to the problem of propagation in a transversely magnet-

ized ferrite-filled waveguide. The fields can be expressed

in the form of products of two trigonometric functions

with arguments which are asymptotic to n~y/b and O

in the limit of zero applied field. ‘The product of these

arguments is dependent only on the magnetic field and

frequency.

Currents IExcited on a Conducting Surface of

Large Radius of Curvature
JAMES R. WAITf

Summary—The nature of the electromagnetic field of an antenna
in the vicinity of a surface of large radius of curvature is dkcussed,

Assuming a spherical surface, the solution for a dipole source in the
form of the Watson residue series is transformed to a more rapidly

converging series which is preferable at short dktances. Using this

result, numerical data is presented in graphical form for the currents

induced on the spherical surface. The curves are applicable to both
a stub and slot antenna mounted on the conducting surface.

N THE VICINITY of a flush-mounted radar an-

1
tenna for aircraft, the fuselage is a smooth conduct-

ing surface having large radii of curvature. It is of

interest to know how the current distribution excited

on this curved surface differs from that on a perfectly

flat surface. It is the purpose clf this paper to investigate

this problem by simulating the curved surface in the

vicinity of the antenna by a spherical surface.

The starting point is to consider the fields of a radial

electric dipole located on a perfectly conducting sphere

of radius a. Choosing a spherical coordinate system

(r, 0, ~), the dipole is locatecf at r = a on the polar axis

and the sphere is bounded by v = a. As is well known,l

the solution of this problem can be expressed in a radial

mode series involving half-order Bessel function whose

arguments are FM where k = 2~/wavelength. Unfortu-

nately, this representation which is often called the lzar-

monic series is very poorly convergent if ka is large com-

~ Natl. Bur. of Standards, Boulder, Colo.
1 H. Bremmer, “Terrestlal Radio Waves, ” Elsevier Pub. Co.

Amsterdam, Holland; 1949.

pared to unity. In fact, something of the order of 2 ka

terms are required to evaluate the field at any point in

space. It was first shown by Watson in 1.918 that the

radial mode or harmonic series could be transformed to

the angular mode or residues series.1 This Watson repre-

sentation is highly convergent in certain regions of

space, namely, deep in the geometrical s’hadow of the

source. However, when the observer is in the space n~ear

the dipole source, the series becomes poorly convergent.

It is the principal task in this paper to derive an al-

ternative expansion which is particularly suitable for

calculating the surface currents excited on the spherical

surface when O is small and ka is large.

The fields of the dipole can be expressed in terms of a

scalar function V as follows:1

‘v= (’2+:)(’-”)
1 a’

‘r attlo ‘r’)
Eo=— ————

13v
H4==-iECO% (1)

where e = 8.854X 10–lZ and the time factor exp (itit) has

been omitted. The surface current density 1, in am-

peres/meter, on the spherical surface has only a radial

component. It is given by

I = Ho],=.


